LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIRST SEMESTER - NOVEMBER 2015

MT 1503 - ANALYTICAL GEOMETRY OF 2D, TRIG. & MATRICES

Time : 01:00-04:00		
	PART – A	(10 X 2 = 20)

Answer ALL questions

- 1. Write the expansion for $\cos n\theta$.
- 2. Write $\cos\theta$ and $\sin\theta$ in ascending powers of θ
- 3. Show that sin(ix) = i sinh x and cos(ix) = cosh x
- 4. Find the value of log(4 + 3i).
- 5. Prove that the matrix $A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ is orthogonal.

6. Find the rank of the matrix
$$A = \begin{pmatrix} 3 & -1 & 2 \\ -6 & 2 & -4 \\ -3 & 1 & -2 \end{pmatrix}$$
.

- 7. Find the polar of (3, 4) with respect to $y^2 = 4ax$
- 8. Define the conjugate diameters of the ellipse.
- 9. Write the standard form of the equation to the Rectangular hyperbola and its asymptotes.
- 10. Give the equation to the straight line and the conic in polar form.

$$PART - B \qquad (5 X8 = 40)$$

Answer any FIVE questions

11. Expand $\cos 8\theta$ in terms of $\sin \theta$

12. Evaluate
$$\lim_{x \to 0} \frac{\tan 2x - 2\tan x}{x^3}$$

13. If
$$\tan \frac{x}{2} = \tanh \frac{y}{2}$$
 prove that $\sinh y = \tan x$ and $y = \log \tan \left(\frac{\pi}{2} + \frac{x}{2}\right)$

14. Separate into real and imaginary parts $\tan^{-1}(x+iy)$.

- 15. Find the characteristic equation of $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$ and hence find its inverse.
- 16. Find the locus of the poles of chords of a parabola subtending a right angle at the vertex.
- 17. Prove that the acute angle between two conjugate diameters of an ellipse is minimum when they are equal.
- 18. If e and e₁ are the eccentricities of a hyperbola and its conjugate, Show that $\frac{1}{e^2} + \frac{1}{e_1^2} = 1$.

PART- C
$$(2 \times 20 = 40)$$

Answer Any TWO Questions

19. a. Determine a, b, c such that $\lim_{\theta \to 0} \frac{\theta(a + b\cos\theta) - c\sin\theta}{\theta^5} = 1$

b. Expand $\sin^3\theta\cos^4\theta$ in terms of multiples of θ .

20. a. If
$$\sin(A+iB) = x + iy$$
, prove that $\frac{x^2}{\sin^2 A} - \frac{y^2}{\cos^2 A} = 1$ and $\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1$

b. If
$$\cos(x+iy) = r(\cos\alpha + i\sin\alpha)$$
, Show that $y = \frac{1}{2}\log\left[\frac{\sin(x-\alpha)}{\sin(x+\alpha)}\right]$

21. Diagonalize the matrix
$$A = \begin{bmatrix} 2 & -2 & 3 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$

22. a. P and Q are extremities of two conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and S

is the focus. Prove that $PQ^2 - (SP - SQ)^2 = 2b^2$.

b. Trace curve $\frac{12}{r} = 4 + \sqrt{3}\cos\theta + 3\sin\theta$.

\$\$\$\$\$\$\$